The spectrum of a ving

The functor Spec lets us associate a geometric object to each ving.

Def: let R be a ring. let <u>Spec</u>R denote the sit of prime ideals of R.

we define a topology, the Zariski topology, on Speck as follows:

For any subset
$$I \subseteq R$$
, $V(I) := \{P \in Spec R \mid I \subseteq P\}$.

Note:
$$V(I) = V(ideal gen. by I)$$
, so we can restrict our
definition to ideals.
In fact, by Section 2, $V(I) = V(\sqrt{I})$.
 $V(I)$ are the closed sets of the Eariski topology.
Note $V(o) = \operatorname{Spec} R$ and $V(R) = \emptyset$.

Claim:
a.)
$$\bigcap V(I_{\lambda}) = V(\sum_{\lambda} I_{\lambda})$$

b.) $V(I)UV(J) = V(I \cap J) = V(IJ)$

$$\underline{\mathsf{Pf}}: a.) \quad \mathsf{Pe} \cap \mathsf{V}(\mathsf{I}_{\lambda}) \iff \mathsf{P} \supseteq \bigcup \mathsf{I}_{\lambda} \iff \mathsf{Pe} \mathsf{V}(\mathsf{Z} \mathsf{I}_{\lambda}).$$

$$b.$$
) IJ \in INJ, s_0 $V(IJ) \geq V(INJ)$.

If
$$P \in V(I) \cup V(J)$$
 then $P \supseteq I$ or J so $P \supseteq I \cap J$,
so $V(I) \cup V(J) \subseteq V(I \cap J)$.

Now suppose $P \supseteq IJ$ but $P \not= I$. i.e. there is ue I but u $\notin P$. \forall ve J, uve P, so ve P. Thus $J \subseteq P$. \rightarrow $V(I) \cup V(J) \supseteq V(IJ)$. D

Note that a single point set EP3 is closed iff P is maximal. The subset of max'l ideals is <u>maxspecl</u>R). Geometrically, these are the points we usually consider.

max Spec (k[x]) = points of k. (More about this in The next section)

2.) max spec
$$k[x,y] = \{(x-a,y-b) \mid a,b \in k\}$$
 $(k=\bar{k})$
so the closed points are in bijection W/k^2 .

The other points of spec correspond to curves

This induced map is continuous, i.e. the preimage of a closed set is closed: Claim: $(f \ \Psi: R \rightarrow S \text{ is a ving map, and } I \subseteq R, Then$ $(Spec \ \Psi)^{-'} (V(I)) = V(\Psi(I)).$

Pf: P is in the LHS $\iff 9^{-1}(P) \in V(I) \iff I \subseteq 9^{-1}(P)$ $\iff 9(I) \subseteq P \iff P$ is in the RHS. D

We already know that the prime ideals of R/I are in correspondence w/ prime ideals in SpecR containing I. In fact:

Claim:
The map
$$Spec(R/I) \rightarrow Spec(R)$$
 is a homeomorphism*
of $Spec(R/I) = Spec(R)$
Check This! (Similar publem on HW.)

* a homeomorphism is a continuous, invertible map whose inverse is also continuous.

Ex: Consider the quotient
$$\mathcal{R} \rightarrow \mathcal{R}/(2)$$
. What is
The induced map on spec?
Spec $\mathcal{R}/(2) = \xi(0) \xi$
Spec $\mathcal{R} = \xi(0), (2), (3), (5), ... \xi$

So we want the pre-image of (0), which is (2). So $(0) \longmapsto (2)$.

Ex: If
$$\mathcal{R} \to \mathbb{Q}$$
 is the inclusion, what is the map
on Spec? (\mathbb{Q}) is a field so Spec $(\mathbb{Q} = \{(0)\})$ and
so $(0) \mapsto (0)$.

Def: If R is a ring, the quotient by the nilradical
$$R_{red} := \frac{R}{n}$$

is called the reduced ring of R.

Since M is contained in every prime ideal, we get $V(M) = \operatorname{Spec} R$, and from above, the quotient map $R \longrightarrow R_{red}$ induces a homeomorphism

Spec R_{red}
$$\xrightarrow{\simeq}$$
 Spec R.
(See HW)